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Abstract—With the widespread use of surveillance cameras,
massive video data analysis has become an extremely labor-
intensive work. In this paper, we propose an efficient approach
to detect video anomaly in crowded scenes based on Spatially
Localized Histogram of Optical Flow (SL-HOF) descriptor and
foreground classification. For motion description, the new SL-
HOF descriptor can not only preserve classic HOF descriptor’s
favorable capability of characterizing the motion velocity and
direction of foreground in crowded scene, but also depicts the
spatial distribution of optical flow, which implicitly encodes the
structure and local motion information of foreground objects
in videos. SL-HOF is shown to significantly outperform other
classic video descriptors. To further boost the performance of
anomaly localization, we then introduce Robust PCA based
foreground classification to discriminate anomalous foreground
texture. Instead of computationally expensive approaches like l1-
norm Sparse Coding, we adopt classic one-class SVM (OCSVM)
to model normal video events and detect outliers (anomaly).
Our experiments on the challenging UCSD datasets show our
approach can achieve state-of-the-art results when compared to
existing video anomaly detection methods.

I. INTRODUCTION

Video anomaly detection, which plays a center role in smart
video surveillance technology, has drawn increasing interest
from academia and industry due to its substantial potential in
liberating human beings from long-time tedious work in mon-
itoring possibly as many as hundreds of surveillance screens.
Various applications of video anomaly detection can be found
in realms such as public security and city management.

Possibilities always come with challenges. The most fun-
damental challenge in video anomaly detection lies in the
definition of ”normal/abnormal event” is not as straightforward
as the ”face” or ”pedestrians”. Early work like [1] attempted
to explicitly describe certain ”abnormal” events or behaviors.
However, such methods are severely limited to certain oc-
casions, not to mention that prior knowledge of anomaly is
often unavailable. Therefore, recent works tend to consider
video anomaly detection as an ”outlier detection” problem
[2]. In such methods, only normal video events are modeled
and ”anomaly” is considered to be those events diverting
significantly from normal events, the idea of which is also
followed in this paper. Another key challenge comes from
video representation. Object tracking and trajectory analysis
[3] [4] [5] [6] seem to be a natural idea to capture high level

feature and it works well in uncrowded scenes. Unfortunately,
tracking based methods perform poorly in crowded scenes due
to frequent occulusions and complex foreground motion. Thus,
robust low level features are proposed to deal with crowded
scene anomaly detection. Mahadevan et al. [7] proposed the
challenging UCSD datasets with crowded scenes and used
Mixture of Dynamic Texture (MDT) for a joint modeling of
foreground appearance and dynamics. Cong et al. [8] proposed
a popular Multi-scale Histogram of Optical Flow (MHOF)
descriptor. Roshtkhari et al. [9] represent spatio-temporal
video volume by classic HOG descriptor, while Zhao et al.
[10] combined 3D HOG and HOF for video representation in
anomaly detection. Proposed by Kratz et al. [11], 3D gradient
is adopted by [12] [13]. The third challenge is video event
modeling. Sparse Coding is a representative category among
those methods. Cong et al. [8] reconstructed a new event by a
dictionary, which consists of representative normal events, by
solving a l1-norm optimization problem. Lu et al. [12] learned
multiple small fixed-size sparse combinations to enable a high-
speed detection process. In addition to Sparse Coding, Antic
et al. [14] extracted a set of foreground hypotheses to jointly
explain all foreground pixels in testing videos. Chen et al.
[15] proposed to use Gaussian Process Regression (GPR) and
hierarchical feature representation to detect video anomaly.
Zhang et al. [13] modeled appearance by Support Vector
Data Description (SVDD), while Saligrama et al. [16] and
Mahadevan et al. [7] both adopted probabilistic models to
describe normal video events.

In this paper, we address video anomaly detection from
crowded scenes based on the proposed SL-HOF and fore-
ground classification. The rest of paper is organized as follows:
In Sec. II, we discuss how to represent video event with SL-
HOF descriptor in terms of motion and analyze the underlying
reasons why SL-HOF based representation is effective. In Sec.
III we introduce foreground classification as a supplement
to SL-HOF based representation to model video foreground
appearance on pixel intensity level,. Robust PCA is used to
extract video foreground and generate textural features of
foreground objects in normal video events. Finally, both SL-
HOF features and textural features of normal video events
are modeled by OCSVM. Experiments and results on UCSD
datasets are shown in Sec. IV. Sec. V concludes the paper.



Fig. 1: The calculation procedure of HOF descriptor.

II. SL-HOF DESCRIPTOR

In this section, optical flow and classic Histogram of Optical
Flow (HOF) descriptor is briefly reviewed. Then we present
the SL-HOF video descriptor and explain the reasons of SL-
HOF’s effectiveness.

A. Optical flow and HOF

Optical flow is calculated by estimating the motion velocity
and direction of each pixel from two consecutive video frames.
Optical flow has been widely used in video anomaly detection
due to its powerful capability of describing motions in video.
To represent motion, HOF descriptor is a frequently used de-
scriptor. To calculate HOF, the optical flow magnitude of each
pixel in region of interest (e.g. spatio-temporal cuboid from
video) is voted into D bins by their optical flow directions to
obtain a D-bin histogram (See Fig. 1) as a HOF feature.

B. SL-HOF

Classic HOF is not discriminative enough to detect different
complex anomaly, therefore SL-HOF is proposed. The calcula-
tion process of a SL-HOF video representation is shown as Fig.
2: Firstly, each video frame is partitioned into non-overlapping
M × N patches with equal size, and patches at the same
spatial location in consecutive d video frames are stacked as a
spatio-temporal cuboid, which is a standard practice in video
anomaly detection. Each spatio-temporal cuboid is assumed to
be a video event with one or several foreground objects. d is
usually small in SL-HOF (e.g. d = 5 in our configuration).
This aims to characterize the foreground motion in a small
temporal interval, in which the foreground does not suffer
from drastic change in spatial location. Then, a spatio-temporal
cuboid is partitioned spatially into m × n local 3D regions.
Unlike cell-based 3D HOG [17], we do not partition the spatio-
temporal cuboid temporally because it will dampen the motion
statistics in each region and increase feature dimension. Next,
histograms of optical flow are calculated from each region
rather than the entire cuboid, which differentiates SL-HOF
from HOF. Finally, all histograms are concatenated to obtain
a SL-HOF representation v = [hT

1 ,h
T
2 , ...h

T
m×n]

T as the motion
summarization of the cuboid (or video event).

The operations done by SL-HOF descriptor are simple.
However, our experiments show SL-HOF descriptor works sur-
prisingly well in video anomaly detection (See Sec. IV-B). The
following two properties of SL-HOF contribute to its sound
performance: First of all, SL-HOF can depict the distribution
of optical flow in video foreground objects, which implicitly

Partition video frames into 
patches (red lines)

Stack patches into a spatio-
temporal cuboid

Calculate HOF in each local region

Partition cuboid spatially into 
local regions (blue lines)

Concatenate all histograms

SL-HOF features

Fig. 2: The calculation procedure of SL-HOF descriptor.
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Fig. 3: Foreground structural information embedded in SL-
HOF based video representation.

encode the structural information of foreground objects into its
vector representation. Consider an example of a walking man
(normal event) and a man in the wheelchair (abnormal event)
in Fig. 3. When the wheelchair moves at a close speed and
direction to the walking man, HOF descriptor can be easily
fooled since classic HOF extracted from the entire spatio-
temporal cuboid wipes out the spatial location information
of foreground when calculating histogram. By contrast, SL-
HOF yields completely different feature vectors because the
spatial distributions of optical flow for man and wheelchair are
totally different, which is caused by their different structure. To
be more specific, strong optical flow histograms (by ”strong”
we mean at least one bin of the histogram has a large vote
value) are found in region 2, 6 and 10 for the walking
man, while strong optical flow histograms are observed in
region 3, 6, 7, 8, 10, 11, 12 for man in the wheelchair (See
Fig. 3). Therefore, localized HOF extraction can preserve the
rough location information of optical flow during calculating
histograms. Consequently, SL-HOF can implicitly embed the
structural information of foreground objects through optical
flow’s spatial distribution.

Secondly, SL-HOF can capture local motion information
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Fig. 4: Local motion information embedded in SL-HOF based
video representation.

of foreground objects. Local motion information can be im-
portant for discriminating different foreground objects, which
is illustrated by Fig. 4: A man (normal event) and a skater
(abnormal event) both heading towards right. Two objects
share very similar structure and appearance, and it will be
difficult to discriminate them when the skater share a close
speed with the walking man. When representing both objects
with HOF descriptor, the difference will be minor since almost
all pixels in both objects are moving towards right and their
optical flow are accumulated into the same bin (The first bin
in this example). However, it should be noted that the local
motion of each body part is not consistent when human is
walking. For example, human’s two legs advance alternatively
when walking. As shown in Fig. 4, the man’s supporting leg
in region 11 almost remain static while the other leg in region
10 is rapidly moving, thus leading to different histograms in
region 10 and 11: region 10 can observe a strong optical flow
histogram while region 11 cannot. However, since the skater
moves as a whole on skateboard, both region 10 and 11 can
observe a strong optical flow histogram. SL-HOF can capture
such difference in local motions. Besides, in crowded scenes
with severe occlusions, localized histogram extraction enables
SL-HOF to describe the local motions of individual object
parts while HOF obviously cannot. Thus, SL-HOF is more
discriminative than HOF or MHOF. SL-HOFs extracted from
the same spatial location are described by OCSVM.

III. FOREGROUND CLASSIFICATION

In addition to motion anomaly, there exists appearance or
texture anomaly that can be directly classified by eyes from
the foreground of a single video frame, e.g., a bicycle on
the pavement. Since SL-HOF has been used to characterize
the motion of video foreground, we propose foreground clas-
sification as a supplement to classify anomalous foreground

Fig. 5: Foreground extraction and texture samples generation.

texture. The procedure is given in Fig. 5: The first step is
to perform Robust PCA [18] on video sequences to obtain
a sparse matrix Et for video frame ft. Afterwards, pi,j , the
probability that pixel f i,jt belongs to foreground, is estimated
by pi,j = 2/exp(−λ · (Ei,j

t )2) − 1, where λ = 1/Np, Np is
the total number of pixels on a frame. Next, the probability
map is binarized by threshold 0.5 to obtain the foreground.
To generate normal texture samples, a fixed-size bounding
box is generated by taking each foreground pixel as the box
center. To filter out redundant boxes, only those boxes with
> 30% pixels to be foreground are preserved. Non-maximum
suppression and sampling are adopted to further reduce the
number of boxes. Remaining boxes are selected as texture
samples and described by HOG descriptor. Texture samples
with centers at the same spatial location (patch) are collected
for training OCSVM, which is applied to discriminate anomaly
from testing texture samples. To control false alarms, the
decision threshold of OCSVM is lowered.

IV. EXPERIMENTS

In this section, we test the proposed approach on the most
commonly-used UCSD datasets with crowded scenes. In Sec.
IV-A, we introduce the adopted UCSD ped1 and ped2 datasets
and the configuration of experiments. Sec. IV-B compares
the proposed SL-HOF descriptor with other classic video
descriptors. Sec. IV-C demonstrate the effect of combining SL-
HOF representation and foreground classification. Detection
results and comparison with other state-of-the-art methods on
are given in Sec. IV-D. Equal Error Rate (EER), ROC Curve
and Area under the Curve (AUC) under two commonly-used
evaluation criteria, frame-level and pixel-level criteria from
[7], are adopted for method comparison. All experiments are
carried out under MATLAB 2015b on a PC with 32 GB RAM
and 3.90 Ghz Intel i7 4790 processor.

A. Datasets and Experimental Configuration

UCSD ped1 dataset consists of 34 training video sequences
and 36 testing video sequences with 200 158 × 238 pixel
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Fig. 6: Comparison of video descriptors.

frames per volume. UCSD ped2 dataset contains 16 training
sequences and 12 testing video sequences with 240×360 video
frames, and the numbers of which range from 120 to 180. All
of the training volumes merely include normal events such as
pedestrians walking on the pavement, while testing volumes
contain abnormal events such as a skater and a vehicle on the
pavement in crowded or uncrowded scenes.

The detection configuration is as follows: A local patch on
a video frame is set to be 10 × 10, with consecutive D = 5
patches are stacked into a spatio-temporal cuboid. Features
extracted from cuboids are assembled into the spatio-temporal
basis from [8] to incorporate neighboring spatial and temporal
correlation. For SL-HOF, the cuboid is partitioned into 7× 8
regions to yield best performance, and PCA is adopted to
reduce SL-HOF feature dimension. The video frames are
resized into three scales for detection: 120 × 180, 100 × 150
and 80×60 for UCSD ped1 dataset, and 180×270, 120×180,
100 × 150 for UCSD ped2 dataset. Foreground classification
is conducted on the original scale with patch size 21 × 21
and bounding box size 20 × 10. Both SL-HOF features of
spatio-temporal cuboids and HOG features of texture samples
are described by OCSVM [19] with Gaussian kernel. The
parameters ν and σ are selected from 2−12, 2−11, ..., 20 and
2−12, 2−11, ..., 212 by 10-fold cross-validation, respectively.

B. Descriptor Comparison

In this section, the proposed SL-HOF descriptor is com-
pared with the following frequently-used video descriptors in
anomaly detection: MHOF [8], 3D HOG [20], 3D HOG+HOF
[10], 3D Gradient [12]. For convenience, a single scale
(100 × 150) detection is performed on UCSD ped1 dataset
with frame-level evaluation criteria using different descriptors.
Other configurations are the same as that in Sec. IV-A. The
ROC curves obtained by different descriptors are given in
Fig. 6 and the EERs are summarized in Tab. I: SL-HOF can
improve detection performance significantly by approximately
10% EER reduction, and AUC is improved by 9% to 15%.

C. Combination of SL-HOF and Foreground Classification

In this section, we show the effect of combining SL-HOF
with foreground classification (FC). Detection with SL-HOF

TABLE I: Comparison of video descriptors.

Descriptor EER AUC

MHOF 29% 76.45%
3D HOG 31% 73.98%

3D HOG+HOF 29% 76.28%
3D Gradient 33% 70.87%

SL-HOF 21% 85.73%

Fig. 7: Combining SL-HOF with FC.

TABLE II: Combining SL-HOF with FC.

EER AUC
SL-HOF 37 % 63.57 %

SL-HOF+FC 35 % 64.35%

only and detection with SL-HOF and FC are performed on
UCSD ped1 dataset under more precise pixel-level evaluation
criteria. As shown in Fig. 7 and Tab. II, foreground classifi-
cation can enhance the anomaly localization performance by
detecting texture anomaly, despite generating slightly more
false alarms.

D. Method Comparison

In this section, we compare the proposed approach with
state-of-the-art approaches in literature. For UCSD ped1
dataset, the following approaches are compared: Gaussian
Process Regression (GPR) based method [15], Sparse Com-
bination Learning (SC) [12], Mixture of Dynamic Texture
(MDT) [7], Sparse Reconstruction Cost (SRC) [8], Social
Force (SF) [21], Social Force and MPPCA (SF+MPPCA),
Dense STC [9] and Adam et al. [22]. EERs, ROC Curves
and AUCs of each methods are compared under both frame-
level and pixel-level criteria (See Fig. 8, Fig. 9, Tab. III). From
Tab. III, our approach yields comparable results with state-of-
the-art methods under frame-level criteria while it evidently
outperforms other methods under more precise pixel-level
criteria.

As to results on UCSD ped2 dataset, the following state-of-
the-art approaches are listed for comparison: Spatio-temporal
Composition (STC) [23], motion and appearance cue (Zhang
et al. [13]), Mixture of Dynamic Texture (MDT) [7], MPPCA
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Fig. 8: Frame-level evaluation on UCSD ped1.
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Fig. 9: Pixel-level evaluation on UCSD ped1.

TABLE III: Detection Results on UCSD ped1 dataset.

Method EER(frame) AUC EER(pixel) AUC

SL-HOF+FC 18% 87.45% 35% 64.35%
SC 15% 91% 40.3% 63.8%

GPR 23.8% 83.8% 37.3% 63.3%
SF 31% 67.5% 79% 19.7%

SF+MPPCA 32% 67% 71% 21.3%
MDT 25% 81.8% 55% 44.1%
SRC 19% 86% 54% 46.1%

Dense STC 16% 89% 58% 41.7%
Adam et al. 38% 65% 76% 13.3%

[24], Social Force and MPPCA (SF+MPPCA) and Adam et
al. [22]. The results are displayed in Fig. 10, Fig. 11 and
Tab. IV (Please note since most pixel-level ROC Curves for
ped2 are not given by literature, we merely plot the ROC
curve of our approach and [13]). As shown in Tab. IV, the
performance improvement brought by our approach is even
greater on ped2 with frame-level EER < 10% and pixel-level
EER < 20%. Such performance gain can be explained by
ped2’s higher video frame resolution, which can facilitate SL-
HOF descriptor to capture optical flow distribution and local
motion information in foreground objects.

It should be noted that the performance of our approach
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Fig. 10: Frame-level evaluation on UCSD ped2.
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Fig. 11: Pixel-level evaluation on UCSD ped2.

TABLE IV: Detection Results on UCSD ped2 dataset.

Method EER(frame) AUC EER(pixel) AUC

SL-HOF+FC 9% 95.07% 19% 81.04%
STC 13% 92% 26% -

Zhang et al. - 90% - 73.7%
MDT 25% 85% 55% -

MPPCA 30% 77% - -
SF+MPPCA 36% 71% - -
Adam et al. 42% 63% - -

is achieved by classic OCSVM instead of more complex
event modeling approaches like Sparse Coding, which often
calls for higher computation due to involving l2,1 and l1-
norm optimization. It demonstrates the effectiveness of our
video representation again. Compared with other methods,
our approach takes a simple implementation but can achieve
comparable or higher detection performance. Examples of
detected video abnormal events on UCSD ped1 and ped2
are shown in Fig. 12 and Fig. 13, and we can see different
categories of video anomaly can be well detected.

V. CONCLUSION

In this paper, we propose a simple but efficient approach
to detect anomaly from crowded scenes based on SL-HOF



Fig. 12: Detected anomaly in ped1: Biker, wheelchair, vehicle
and skater.

Fig. 13: Detected anomaly in ped2: Biker, skater, vehicle and
walking man with bike.

descriptor and foreground classification. The proposed SL-
HOF descriptor can capture the spatial distribution of optical
flow and local motion information embedded in video fore-
ground objects, which leads to a higher discriminative power
than classic video descriptors in video anomaly detection.
Foreground classification is proposed to enhance anomaly lo-
calization performance by detecting texture anomaly in video
frames. The proposed approach yields state-of-the-art results
on the challenging UCSD datasets.
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